
VHDL-AMS Modeling and Compilation for
Parallel Mixed-Mode Simulation

B ojan A nđelković, M arko D im itrijević and M ilunka D am njanović

Abstract – In this paper a survey of recommended VHDL-
AMS modeling practices for effective parallel simulation is given.
Also, a need for extension of VHDL-AMS standard is considered
in order to enable the designer to influence parallel simulation
performance during the model development. Mixed-mode circuit
partitioning algorithms that should be applied during the model
compilation are presented.

Keywords – Parallel mixed-mode simulation, VHDL-AMS

I. INTRODUCTION

T oday’s high end integrated circuits m ay contain
millions of transistors and becoming increasingly complex
in the diversity of devices (embedded software, micro-
electro-mechanical components). Having in mind the rapid
growth of the electronic systems complexity and short
time-to-market demands, the simulation has become time
consuming and represents a bottleneck in the design flow.
The modern simulation is based on system modeling in one
of standard Hardware Description Languages (HDL), such
as VHDL-AMS [1], which support an easy description of
mixed-signal VLSI systems with various portions described
at different abstraction levels. VHDL-AMS simulation is a
compute intensive, particularly for large models. In order to
accelerate the simulation process and reduce very long
simulation runtimes of such HDL descriptions parallel
simulation tools can be used [2]. Parallel simulation is
based on splitting the circuit into several pieces and
simulating them in parallel one piece per workstation. The
potentially larger amount of the memory in workstation
clusters will enable the execution of larger simulation
models.

This paper contains some VHDL-AMS modeling
recommendations necessary to achieve high-performance
parallel simulation. Also, existing partitioning methods that
should be performed during the VHDL-AMS model
compilation are presented. A need for extension of VHDL-
AMS in order to adapt it for the use in parallel simulations
is considered.

A brief overview of VHDL-AMS modeling features is
presented in Section II. Also, some modeling
recommendations for the development of VHDL-AMS
models for parallel simulations are given. Mixed-mode

circuit partitioning techniques performed during the
VHDL-AMS model compilation are discussed in Section
III. Section IV summarizes the presented survey of parallel
modelling recommendations and partitioning algorithms
together with some future work directions.

II. VHDL-AMS MODELING FEATURES

A. VHDL-AMS Model Description

VHDL-AMS is an Analog and Mixed-Signal extension

to the Very-High-Speed-Integrated-Circuits Hardware
Description Language (VHDL). It is a combination of the
base IEEE Std 1076-1993 (VHDL) standard and IEEE
1076.1-1999. (analog and mixed-signal extensions) [3].
VHDL-AMS is an internal name, widely used in the
designers’ com m unity, for the com bination of these
standards.

VHDL-AMS provides behavioral and structural
description of both discrete and continuous systems. Being
a superset of VHDL it inherited all its advantages such as
structural and functional decomposition, separate
compilation, a powerful sequential notation, and the strong
type system of a modern programming language. The
discrete models are specified using component
instantiations, concurrent signal assignment and the process
statement. Modeling of continuous systems is based on the
theory of Differential and Algebraic Equations (DAEs).
DAE-based continuous systems can be modeled similar to
discrete models at several hierarchical levels. A special
notation for D A E ’s is introduced describing precisely what
system of equations is implied at each simulation time.
VHDL-AMS also has the ability to describe non-electrical
physical phenomena. Mixed-discipline models with
different domains such as electrical, physical, and thermal
can be described and simulated in a single entity.

A structure of a VHDL-AMS model and an overview of
the language elements and statements are given with the
help of a simple RC circuit model with a pre charged
capacitor shown in Fig. 1 [4].

For representing the unknown continuous variables in
the system of DAEs, VHDL-AMS introduces a new class
of objects, the quantity [5]. Quantities can also be declared
as ports of the model (the points that can be connected to
other models). Additional branch quantities are provided to
support conservation semantics of the systems like
electrical circuits. There are two kinds of branch quantities:
across quantities representing effort like effects such as

Bojan Anđelković, M arko D im itrijević and Milunka
Damnjanović are with the Department of Electronics, Faculty of
E lectronic E ngineering, U niversity of N iš, A leksandra
Medvedeva 14, 18000 N iš, S erbia and M ontenegro, E -mail:
(abojan, marko, mila)@elfak.ni.ac.yu.

voltage or temperature, and through quantities for flow like
effects such as current and fluid flow rate. In the RC circuit
example, the branch quantities are capacitor and resistor
voltage and current. They are declared with reference to
two terminals. Terminals can be of different natures that
represent distinct energy domains (electrical, thermal, etc.).
Using of terminals as ports of the model enables
constructing nodes on hierarchical descriptions when such
model is instantiated.

-- Set initial value (pre charged capacitor)

LIBRARY DISCIPLINES;
LIBRARY IEEE;

USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;

ENTITY RC IS
END;

ARCHITECTURE behav OF RC IS
 TERMINAL n1,n2: ELECTRICAL;
 QUANTITY v_in ACROSS i_in THROUGH n1 TO electrical_ground;
 QUANTITY u_r ACROSS i_r THROUGH n1 TO n2;
 QUANTITY u_c ACROSS i_c THROUGH n2 TO electrical_ground;
BEGIN

 BREAK u_c => 0.5; --initvalue

 v_in == 1.0; --constant voltage source
 i_r == u_r / 1000.0; --resistor equation
 i_c == 1.0e-6 * u_c'dot; --capacitor equation
END;

Fig. 1. VHDL-AMS model of an RC circuit

The system of DAEs can be described using
simultaneous statements. These statements express the
system behaviour by specifying relationships between
quantities. The language supports two quantity attributes
(‘dot and ‘integ) to specify derivatives and integrations
over time, respectively. VHDL-AMS also provides two
special simultaneous statements, called simultaneous if and
simultaneous case, to change the set of equations. These
statements include conditional expressions and depending
of their satisfaction appropriate set of equations is solved.

A special construct called the break statement is used to
represent discontinuities in VHDL-AMS model
descriptions. It specifies new initial conditions and the
possible occurrence of a discontinuity. The model
developer should provide the necessary break statements to
notify the simulator of possible discontinuities. In the
example, break statement is used to setup initial value for
capacitor voltage.

Since DAE solvers use numerical algorithms to solve
the equation systems, VHDL-AMS enables the designer to
specify individual tolerances for quantities which must be
satisfied by the simulator. It gives the designer an
opportunity to trade between accuracy and simulation
speed, as more accurate solutions require longer simulation
runtimes.

VHDL-AMS is developed as a universal and tool
independent language for modeling and documentation of
both analog and digital devices and physical subsystems

from other domains. That enables the designer to focus on
the model equations without distraction of specific
simulator internals. In that way they can create models with
different abstraction levels that improve significantly
simulation speed.

B. Modeling Recommendations for Parallel Simulation

A set of recommended VHDL-AMS modeling practices

to help designers achieve effective parallel simulation is
given in [6]. Performances of VHDL-AMS parallel mixed-
mode simulation depend on hardware processing
environment (number of processors, interconnecting
network), VHDL-AMS compiling techniques, and
VHDL-AMS models used for simulation. Some model
features, such as model complexity, model abstraction and
stimulus influence parallel simulation performance, but the
designer cannot do anything to improve them. However,
there are some modeling issues that can be under model
developer’s control. These modeling issues include
simulation time resolution, number of processes, data
types, and shared variables.

VHDL-AMS gives the designer an opportunity to
develop models at many levels of abstraction. In sequential
simulation executing on a single processor, less abstract
models increase simulation time. However, when parallel
simulation is used, increasing the number of details in a
model can yield more units capable of executing
concurrently. In that way, when more detailed models are
used, it is possible to achieve parallel simulation speedup
comparing to a uni-processor. When such models are
developed for parallel simulation, it is necessary to enable
de-coupling between model elements in order to improve
simulation performance.

The use of physically-oriented delay or parasitic
information (such as SDF and VITAL) during VHDL-
AMS simulation decreases parallel simulation
performance. These timing models distribute evaluations at
a wider range of time instants in the simulation time
domain and that decreases parallelism. Better performances
can be achieved by reducing the precision of delay and
other timing parameters in the model.

In order to improve parallel simulation performance,
VHDL-AMS models should consist of more processes,
tasks, or their equivalents than there are processors
executing simulation.

The transmitting events between processors on a
parallel computer influence the simulation performance
more than when the communication is performed in the
memory subsystem of single-processor architecture.
Therefore, if it is necessary to transmit more than one
scalar signal value at the same time between different
processors (i.e. workstations on a computer cluster),
parallel simulation performance can be improved by
aggregating these scalars into a single composite event.
Such aggregation can be automatically implemented during
the VHDL-AMS compilation process, as described in [7],

or the designer can implement such aggregation during the
development of VHDL-AMS model source code.

Shared variables added in V H D L ’93 standard can
decrease parallel simulation efficiency, because they
require communication between two or more processes in
which they are used. Therefore, the model developer
should avoid use of variables referenced by more than one
process. If such variables must be used it is necessary to
m axim ize the variable’s locality to as few processes as
possible.

Besides mentioned discrete-event modeling
recommendations, there are also recommended continuous-
domain modeling practices given in [6]. The parallel
VHDL-AMS model developer can maximize simulation
performance of analog and mixed-signal systems through
appropriate use of circuit decomposition, tolerances and
discontinuities.

In order to reduce communication latency during
parallel simulation, large mixed-signal systems should be
described as a collection of smaller continuous-domain
models completely surrounded by discrete-event models.

As mentioned in the previous subsection, in VHDL-
AMS quantity tolerances that must be satisfied during the
equation system solving, can be specified. It is
recommended to use broader tolerances, because in that
way it is easier to divide the parallel solver among different
cluster nodes by facilitating convergence of independent
parts of the solution. However, broad tolerances give less
accurate simulation results, so a compromise between
parallel simulation performance and solution accuracy
should be made.

Situations in which implicit or explicit value
discontinuities occur in a quantity should be avoided. Use
of VHDL-AMS ramp and slew quantity attributes reduces
the impact of discontinuities on parallel simulation.

III. VHDL-AMS COMPILATION FOR
PARALLEL SIMULATION

A. Parallel Mixed-Mode Simulation

A survey of parallel mixed-mode simulation algorithms

and implementations is given in [2]. Mixed-mode designs
are particularly convenient for parallel simulation, since
they are by default partitioned into analog and digital parts
that can be executed concurrently. Therefore, a parallel
mixed-mode simulator consists of two distinct simulation
kernels: continuous-time differential equation simulation
kernel and discrete-event simulation kernel. In order to
achieve parallel mixed-mode simulation, appropriate
synchronization protocols [8] between these analog and
digital simulation kernels are necessary.

Digital components in parallel discrete-event simulation
are modeled as a collection of concurrently executing
logical processes (LPs) that communicate via message
passing. LPs can be assigned to different cluster nodes and
distribute the simulation across the network of

workstations.
The domain decomposition technique described in [9] is

often used for parallelization of differential equation
solvers.

B. Mixed-Mode-Circuit Partitioning

High-performance parallel simulation requires
partitioning the simulation model into several parts in order
to simulate one part per processor. Electronic circuits have
natural clustering that can be used to achieve good
partitioning results.

The partitioning methods are based on either
parallelism in the simulation algorithm or in the circuit
being simulated. Partitioning based on simulation
algorithm is limited by the properties of specific algorithm
used for simulation. The later method exploits the
concurrency and parallelism in the circuit structure in order
to minimize communication between cluster nodes and
balance the nodes workload.

In parallel discrete-event simulation (PDES), the system
under simulation is modeled as a collection of concurrently
executing logical processes (LPs) that communicate via
message passing. LPs then maybe assigned to different
cluster nodes, thus distributing the simulation across the
network of workstations.

Many of the partitioning algorithms for parallel logic
simulation are based on a directed graph representation of
the simulated circuit. In such representation the vertices of
the graph denote logic components while edges represent
signals. In [10] a multilevel approach to partitioning is
proposed. It optimizes all factors for improving parallel
logic simulation by decoupling them into separate phases.

The main objective in partitioning is to reduce the
simulation time through equal load balance of processors
and low communication overhead. Since, interconnecting
signals between partitions cause time consuming
communication, it is necessary to achieve a small number
of signals connecting the partitions.

The partitioning should also provide equal workload for
all slave nodes which enables optimal distribution of
simulation effort. In order to estimate the workload, each
circuit element can be assigned a weight according to its
simulation complexity. One such partitioning method is
COPART [11] implemented in TITAN parallel transistor
level simulator. It reads the circuit description in SPICE
and after partitioning a SPICE netlist for each partition is
created, which is required for parallel simulation. In this
method the structure of the circuit is mapped to an
undirected graph, where the nodes represent the circuit
elements and the edges are the signals connecting them.
Appropriate weights for the nodes and the edges are
assigned representing the simulation effort needed to
simulate the element (i.e. the node in the graph). Signals
connected to a lot of elements are widely distributed over
the circuit and their cutting cannot be avoided during the
partitioning. Therefore, such signals have lower weights

meaning lower significance during the partitioning. The
partitioning process is focused on signals connected to a
few elements to avoid cutting them. Similar workload for
each cluster node is achieved if the element weight sums
are similar for all partitions. As the partition simulations
are synchronized by the master process, a master circuit
description with special references to the cut nets is also
created.

Mixed-signal VHDL-AMS simulator SEAMS [12]
exploits component-level partitioning and analog island
modeling to completely partition the VHDL-AMS
description at the entity-architecture level and simulate the
partitioned system on a workstation cluster. SEAMS
analyzes the VHDL-AMS model description and generates
a set of characteristic expressions (CEs) from the
simultaneous statements. CEs gover the behavior of the
continuous part of the mixed-signal system. Partitioning of
a VHDL-AMS model, implemented in SEAMS, is based
on grouping and solving for the unknowns occurring in a
connected set of CEs. The set of CEs consists of equations
that are sufficient to determine the unknowns in the set.
The criterion for grouping depends on the characteristics of
the equations in the model. A single set of CEs is called
analog island. The objective in partitioning is that no two
analog islands may communicate during simulation. Break
conditions and quantities are used for the communication
between the discrete-event and the continuous processes.

As it can be seen, only partitioning algorithms which
guarantee a minimum communication overhead may be
able to provide good speed-up on workstation cluster. The
mapping of LPs to workstations can be performed
automatically based on some partitioning and load-
balancing heuristics. However, automatically parallelized
code generally cannot achieve good speed-up. Sometimes
the model developer is in much better position to know the
runtime characteristics of the processes and would want to
manually perform partitioning and load-balancing.
Therefore special parallel simulation languages, such as
Parsec [13] have been developed. They allow user to
influence parallel simulation performances during the
model development. Parsec is a C-based PDES language
that allows the model developer to specify the specific
node on which an entity will be created by using an
appropriate option during entity creation. It enables that
model can be partitioned in such way that message
communication between nodes is minimized, with balanced
computation load. Also, the language has special constructs
to specify communication between entities and control the
execution of all processes [14]. Each entity will execute its
own tasks, and if necessary, communicate with one another
by sending and receiving messages. One code example in
Parsec is shown in Fig. 2 [14]. In this example the entity
worker performs some tasks, then receives a storeRequest
message from another entity, stores the message, and
resumes working on another task.

Similar constructs can be added to VHDL-AMS in
order to extend the standard language and allow the user

flexibility to influence simulation performance during the
model development. Desired features for PDES languages
can be found in [14] and can be used as a basis in the
development of VHDL-AMS extensions for parallel
simulations.

entity worker {
 …
 doTask();
 receive (storeRequest msg) {
 storeMessage(msg);
 }
 doMoreTask();
}

Fig. 2. Parsec code example

IV. CONCLUSION

VHDL-AMS is a standard mixed-signal HDL that
promises to play very important role in the specification
and verification of mixed-signal systems. Since it is tool
and vendor independent, it has advantages over other
simulator specific parallel simulation languages. However,
in order to use VHDL-AMS for parallel simulation some
constructs and elements from parallel simulation languages
should be added into VHDL-AMS. It would give the
designers an opportunity to take advantage of standard
HDL together with ability to have more control over
parallel simulation performance during the model
development. Also, the designer should follow presented
modeling recommendations to achieve effective parallel
simulation. During the compilation of VHDL-AMS
models, appropriate partitioning techniques should be
applied to minimize communication between cluster nodes
and enable equal workload.

REFERENCES

[1] C hristen, E ., B akalar, K ., “VHDL-AMS – A Hardware

Description Language for Analog and Mixed-Signal
Applications”, IE E E T rans. C A S , V ol. 46, N o. 10, O ct.,
1999., pp. 1263-1272.

[2] Savić, M ., A nđelković, B ., L itovski, V ., “Parallel
Mixed-Mode Simulation – Preliminary Study”, Proc. of
V Symposium on Industrial Electronics INDEL 2004,
Nov., 2004, pp. 76-79

[3] IE E E C om puter S ociety, “IEEE Standard VHDL-AMS
Language Reference Manual”, IE E E Computer Society,
1999.

[4] http://www.hamster-ams.com
[5] A shenden, P ., P eterson, G ., T eegarden, D ., “The System

D esigner’s G uide to V H D L -AMS”, M organ K aufm ann
Publishers, San Francisco, 2003.

[6] P eterson, G ., W illis, J., “High-Performance Hardware

Description Language Simulation: Modelling Issues
and Recommended Practices”, T rans. of T he S ociety
for Computer Simulation International, Vol. 16, No. 1,
1999., pp. 6-15.

[7] W illis, J., S iew iorek, D ., “Optimizing VHDL
Compilation for Parallel Simulation”, IE E E Design &
Test of Computers, Sep., 1992, pp.

[8] F rey, P ., R adhakrishnan, R ., “Parallel Mixed-
Technology Simulation”, P roc. of the 14th W orkshop on
P arallel and D istributed S im ulation P A D S ’00, M ay,
2000, pp. 7-14.

[9] Fröhlich, N., Riess, B., Wever, U., Zheng, Q ., “A New
Approach for Parallel Simulation of VLSI Circuits on a
Transistor Level”, IE E E T rans. C A S , V ol. 45, N o. 6,
Jun, 1998, pp. 601-613

[10] S ubram anian, S ., R ao, D ., W ilsey, P ., “Study of a
Multilevel Approach to Partitioning for Parallel Logic
Simulation”, 14th International P arallel and D istributed

Processing Symposium, May, 2000, pp. 833-836
[11] F röhlich, N ., R iess, B ., W ever, U ., Z heng, Q ., “A New

Partitioning Method for Parallel Simulation of VLSI
Circuits on Transistor Level”, P roc. of D esign,
Automation and Test in Europe, 2000, pp. 679-684.

[12] Frey, P., Nellayappan, K., Shanmugasundaram, V.,
Mayiladuthurai, R., Chandrashekar, C., Carter, H.,
“SEAMS: Simulation Environment for VHDL-AMS”,
Proc. of the 1998 Winter Simulation Conference, Dec.,
1998, pp. 539-546.

[13] Bagrodia, R., Meyer, R., Takai, M., Chen, Y., Zeng,
X ., M artin, J., S ong, H ., “Parsec: A Parallel Simulation
Environment for Complex Systems”, C om puter, V ol. 31,
No. 10, Oct., 1998, pp. 77-85

[14] Low, Y., Lim, C., Wentong, C., Huang, S., Hsu, W.,
Jain, S ., T urner, S ., “Survey of Languages and Runtime
Libraries for Parallel Discrete-Event Simulation”,
Simulation, Vol. 72, No. 3, March, 1999, pp. 170-186

