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Abstract –  In this paper a survey of recommended VHDL-
AMS modeling practices for effective parallel simulation is given. 
Also, a need for extension of VHDL-AMS standard is considered 
in order to enable the designer to influence parallel simulation 
performance during the model development. Mixed-mode circuit 
partitioning algorithms that should be applied during the model 
compilation are presented. 
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I. INTRODUCTION 
 

T oday’s high end integrated circuits m ay contain 
millions of transistors and becoming increasingly complex 
in the diversity of devices (embedded software, micro-
electro-mechanical components). Having in mind the rapid 
growth of the electronic systems complexity and short 
time-to-market demands, the simulation has become time 
consuming and represents a bottleneck in the design flow. 
The modern simulation is based on system modeling in one 
of standard Hardware Description Languages (HDL), such 
as VHDL-AMS [1], which support an easy description of  
mixed-signal VLSI systems with various portions described 
at different abstraction levels. VHDL-AMS simulation is a 
compute intensive, particularly for large models. In order to 
accelerate the simulation process and reduce very long 
simulation runtimes of such HDL descriptions parallel 
simulation tools can be used [2]. Parallel simulation is 
based on splitting the circuit into several pieces and 
simulating them in parallel one piece per workstation. The 
potentially larger amount of the memory in workstation 
clusters will enable the execution of larger simulation 
models. 

This paper contains some VHDL-AMS modeling 
recommendations necessary to achieve high-performance 
parallel simulation. Also, existing partitioning methods that 
should be performed during the VHDL-AMS model 
compilation are presented. A need for extension of VHDL-
AMS in order to adapt it for the use in parallel simulations 
is considered. 

A brief overview of VHDL-AMS modeling features is 
presented in Section II. Also, some modeling 
recommendations for the development of VHDL-AMS 
models for parallel simulations are given. Mixed-mode 

circuit partitioning techniques performed during the 
VHDL-AMS model compilation are discussed in Section 
III.  Section IV summarizes the presented survey of parallel 
modelling recommendations and partitioning algorithms 
together with some future work directions. 
 

II. VHDL-AMS MODELING FEATURES 
 
A. VHDL-AMS Model Description 

 
VHDL-AMS is an Analog and Mixed-Signal extension 

to the Very-High-Speed-Integrated-Circuits Hardware 
Description Language (VHDL). It is a combination of the 
base IEEE Std 1076-1993 (VHDL) standard and IEEE 
1076.1-1999. (analog and mixed-signal extensions) [3]. 
VHDL-AMS is an internal name, widely used in the 
designers’ com m unity, for the com bination of these 
standards. 

VHDL-AMS provides behavioral and structural 
description of both discrete and continuous systems. Being 
a superset of VHDL it inherited all its advantages such as 
structural and functional decomposition, separate 
compilation, a powerful sequential notation, and the strong 
type system of a modern programming language. The 
discrete models are specified using component 
instantiations, concurrent signal assignment and the process 
statement. Modeling of continuous systems is based on the 
theory of Differential and Algebraic Equations (DAEs). 
DAE-based continuous systems can be modeled similar to 
discrete models at several hierarchical levels. A special 
notation for D A E ’s is introduced describing precisely what 
system of equations is implied at each simulation time. 
VHDL-AMS also has the ability to describe non-electrical 
physical phenomena. Mixed-discipline models with 
different domains such as electrical, physical, and thermal 
can be described and simulated in a single entity. 

A structure of a VHDL-AMS model and an overview of 
the language elements and statements are given with the 
help of a simple RC circuit model with a pre charged 
capacitor shown in Fig. 1 [4]. 

For representing the unknown continuous variables in 
the system of DAEs, VHDL-AMS introduces a new class 
of objects, the quantity [5]. Quantities can also be declared 
as ports of the model (the points that can be connected to 
other models). Additional branch quantities are provided to 
support conservation semantics of the systems like 
electrical circuits. There are two kinds of branch quantities: 
across quantities representing effort like effects such as 
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voltage or temperature, and through quantities for flow like 
effects such as current and fluid flow rate. In the RC circuit 
example, the branch quantities are capacitor and resistor 
voltage and current. They are declared with reference to 
two terminals. Terminals can be of different natures that 
represent distinct energy domains (electrical, thermal, etc.). 
Using of terminals as ports of the model enables 
constructing nodes on hierarchical descriptions when such 
model is instantiated. 
 

-- Set initial value (pre charged capacitor)

LIBRARY DISCIPLINES;
LIBRARY IEEE;

USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;

ENTITY RC IS
END;

ARCHITECTURE behav OF RC IS
    TERMINAL n1,n2: ELECTRICAL;
    QUANTITY v_in ACROSS i_in THROUGH  n1 TO electrical_ground;
    QUANTITY u_r ACROSS i_r THROUGH n1 TO n2;
    QUANTITY u_c ACROSS i_c THROUGH n2 TO electrical_ground;
BEGIN

    BREAK  u_c => 0.5;       --initvalue
                    
    v_in == 1.0;      --constant  voltage source
    i_r  == u_r  / 1000.0;      --resistor  equation
    i_c  == 1.0e-6 * u_c'dot;   --capacitor equation 
END;

 
 

Fig. 1.  VHDL-AMS model of an RC circuit 
 

The system of DAEs can be described using 
simultaneous statements. These statements express the 
system behaviour by specifying relationships between 
quantities. The language supports two quantity attributes 
(‘dot and ‘integ ) to specify derivatives and integrations 
over time, respectively. VHDL-AMS also provides two 
special simultaneous statements, called simultaneous if and 
simultaneous case, to change the set of equations. These 
statements include conditional expressions and depending 
of their satisfaction appropriate set of equations is solved. 

A special construct called the break statement is used to 
represent discontinuities in VHDL-AMS model 
descriptions. It specifies new initial conditions and the 
possible occurrence of a discontinuity. The model 
developer should provide the necessary break statements to 
notify the simulator of possible discontinuities. In the 
example, break statement is used to setup initial value for 
capacitor voltage. 

Since DAE solvers use numerical algorithms to solve 
the equation systems, VHDL-AMS enables the designer to 
specify individual tolerances for quantities which must be 
satisfied by the simulator. It gives the designer an 
opportunity to trade between accuracy and simulation 
speed, as more accurate solutions require longer simulation 
runtimes. 

VHDL-AMS is developed as a universal and tool 
independent language for modeling and documentation of 
both analog and digital devices and physical subsystems 

from other domains. That enables the designer to focus on 
the model equations without distraction of specific 
simulator internals. In that way they can create models with 
different abstraction levels that improve significantly 
simulation speed. 

 
B. Modeling Recommendations for Parallel Simulation 

 
A set of recommended VHDL-AMS modeling practices 

to help designers achieve effective parallel simulation is 
given in [6]. Performances of VHDL-AMS parallel mixed-
mode simulation depend on hardware processing 
environment (number of processors, interconnecting 
network), VHDL-AMS  compiling techniques, and 
VHDL-AMS models used for simulation. Some model 
features, such as model complexity, model abstraction and 
stimulus influence parallel simulation performance, but the 
designer cannot do anything to improve them. However, 
there are some modeling issues that can be under model 
developer’s control. These modeling issues include 
simulation time resolution, number of processes, data 
types, and shared variables. 

VHDL-AMS gives the designer an opportunity to 
develop models at many levels of abstraction. In sequential 
simulation executing on a single processor, less abstract 
models increase simulation time. However, when parallel 
simulation is used, increasing the number of details in a 
model can yield more units capable of executing 
concurrently. In that way, when more detailed models are 
used, it is possible to achieve parallel simulation speedup 
comparing to a uni-processor. When such models are 
developed for parallel simulation, it is necessary to enable 
de-coupling between model elements in order to improve 
simulation performance. 

The use of physically-oriented delay or parasitic 
information (such as SDF and VITAL) during VHDL-
AMS simulation decreases parallel simulation 
performance. These timing models distribute evaluations at 
a wider range of time instants in the simulation time 
domain and that decreases parallelism. Better performances 
can be achieved by reducing the precision of delay and 
other timing parameters in the model. 

In order to improve parallel simulation performance, 
VHDL-AMS models should consist of more processes, 
tasks, or their equivalents than there are processors 
executing simulation. 

The transmitting events between processors on a 
parallel computer influence the simulation performance 
more than when the communication is performed in the 
memory subsystem of single-processor architecture. 
Therefore, if it is necessary to transmit more than one 
scalar signal value at the same time between different 
processors (i.e. workstations on a computer cluster), 
parallel simulation performance can be improved by 
aggregating these scalars into a single composite event. 
Such aggregation can be automatically implemented during 
the VHDL-AMS compilation process, as described in [7], 



or the designer can implement such aggregation during the 
development of VHDL-AMS model source code. 

Shared variables added in V H D L ’93 standard can 
decrease parallel simulation efficiency, because they 
require communication between two or more processes in 
which they are used. Therefore, the model developer 
should avoid use of variables referenced by more than one 
process. If such variables must be used it is necessary to 
m axim ize the variable’s locality to as few  processes as 
possible. 

Besides mentioned discrete-event modeling 
recommendations, there are also recommended continuous-
domain modeling practices given in [6]. The parallel 
VHDL-AMS model developer can maximize simulation 
performance of analog and mixed-signal systems through 
appropriate use of circuit decomposition, tolerances and 
discontinuities. 

In order to reduce communication latency during 
parallel simulation, large mixed-signal systems should be 
described as a collection of smaller continuous-domain 
models completely surrounded by discrete-event models. 

As mentioned in the previous subsection, in VHDL-
AMS quantity tolerances that must be satisfied during the 
equation system solving, can be specified. It is 
recommended to use broader tolerances, because in that 
way it is easier to divide the parallel solver among different 
cluster nodes by facilitating convergence of independent 
parts of the solution. However, broad tolerances give less 
accurate simulation results, so a compromise between 
parallel simulation performance and solution accuracy 
should be made. 

Situations in which implicit or explicit value 
discontinuities occur in a quantity should be avoided. Use 
of VHDL-AMS ramp and slew quantity attributes reduces 
the impact of discontinuities on parallel simulation.  
 

III. VHDL-AMS COMPILATION FOR 
PARALLEL SIMULATION 

 
A. Parallel Mixed-Mode Simulation 

 
A survey of parallel mixed-mode simulation algorithms 

and implementations is given in [2]. Mixed-mode designs 
are particularly convenient for parallel simulation, since 
they are by default partitioned into analog and digital parts 
that can be executed concurrently. Therefore, a parallel 
mixed-mode simulator consists of two distinct simulation 
kernels: continuous-time differential equation simulation 
kernel and discrete-event simulation kernel. In order to 
achieve parallel mixed-mode simulation, appropriate 
synchronization protocols [8] between these analog and 
digital simulation kernels are necessary. 

Digital components in parallel discrete-event simulation 
are modeled as a collection of concurrently executing 
logical processes (LPs) that communicate via message 
passing. LPs can be assigned to different cluster nodes and 
distribute the simulation across the network of 

workstations. 
The domain decomposition technique described in [9] is 

often used for parallelization of differential equation 
solvers. 
 
B. Mixed-Mode-Circuit Partitioning 
 

High-performance parallel simulation requires 
partitioning the simulation model into several parts in order 
to simulate one part per processor. Electronic circuits have 
natural clustering that can be used to achieve good 
partitioning results. 

The partitioning methods are based on either 
parallelism in the simulation algorithm or in the circuit 
being simulated. Partitioning based on simulation 
algorithm is limited by the properties of specific algorithm 
used for simulation.  The later method exploits the 
concurrency and parallelism in the circuit structure in order 
to minimize communication between cluster nodes and 
balance the nodes workload. 

In parallel discrete-event simulation (PDES), the system 
under simulation is modeled as a collection of concurrently 
executing logical processes (LPs) that communicate via 
message passing. LPs then maybe assigned to different 
cluster nodes, thus distributing the simulation across the 
network of workstations. 

Many of the partitioning algorithms for parallel logic 
simulation are based on a directed graph representation of 
the simulated circuit. In such representation the vertices of 
the graph denote logic components while edges represent 
signals. In [10] a multilevel approach to partitioning is 
proposed. It optimizes all factors for improving parallel 
logic simulation by decoupling them into separate phases. 

The main objective in partitioning is to reduce the 
simulation time through equal load balance of processors 
and low communication overhead. Since, interconnecting 
signals between partitions cause time consuming 
communication, it is necessary to achieve a small number 
of signals connecting the partitions. 

The partitioning should also provide equal workload for 
all slave nodes which enables optimal distribution of 
simulation effort. In order to estimate the workload, each 
circuit element can be assigned a weight according to its 
simulation complexity. One such partitioning method is 
COPART [11] implemented in TITAN parallel transistor 
level simulator. It reads the circuit description in SPICE 
and after partitioning a SPICE netlist for each partition is 
created, which is required for parallel simulation.   In this 
method the structure of the circuit is mapped to an 
undirected graph, where the nodes represent the circuit 
elements and the edges are the signals connecting them. 
Appropriate weights for the nodes and the edges are 
assigned representing the simulation effort needed to 
simulate the element (i.e. the node in the graph).  Signals 
connected to a lot of elements are widely distributed over 
the circuit and their cutting cannot be avoided during the 
partitioning. Therefore, such signals have lower weights 



meaning lower significance during the partitioning. The 
partitioning process is focused on signals connected to a 
few elements to avoid cutting them. Similar workload for 
each cluster node is achieved if the element weight sums 
are similar for all partitions. As the partition simulations 
are synchronized by the master process, a master circuit 
description with special references to the cut nets is also 
created. 

Mixed-signal VHDL-AMS simulator SEAMS [12] 
exploits component-level partitioning and analog island 
modeling to completely partition the VHDL-AMS 
description at the entity-architecture level and simulate the 
partitioned system on a workstation cluster. SEAMS 
analyzes the VHDL-AMS model description and generates 
a set of characteristic expressions (CEs) from the 
simultaneous statements. CEs gover the behavior of the 
continuous part of the mixed-signal system. Partitioning of 
a VHDL-AMS model, implemented in SEAMS, is based 
on grouping and solving for the unknowns occurring in a 
connected set of CEs. The set of CEs consists of equations 
that are sufficient to determine the unknowns in the set. 
The criterion for grouping depends on the characteristics of 
the equations in the model. A single set of CEs is called 
analog island. The objective in partitioning is that no two 
analog islands may communicate during simulation. Break 
conditions and quantities are used for the communication 
between the discrete-event and the continuous processes. 

As it can be seen, only partitioning algorithms which 
guarantee a minimum communication overhead may be 
able to provide good speed-up on workstation cluster. The 
mapping of LPs to workstations can be performed 
automatically based on some partitioning and load-
balancing heuristics. However, automatically parallelized 
code generally cannot achieve good speed-up. Sometimes 
the model developer is in much better position to know the 
runtime characteristics of the processes and would want to 
manually perform partitioning and load-balancing. 
Therefore special parallel simulation languages, such as 
Parsec [13] have been developed. They allow user to 
influence parallel simulation performances during the 
model development. Parsec is a C-based PDES language 
that allows the model developer to specify the specific 
node on which an entity will be created by using an 
appropriate option during entity creation. It enables that 
model can be partitioned in such way that message 
communication between nodes is minimized, with balanced 
computation load. Also, the language has special constructs 
to specify communication between entities and control the 
execution of all processes [14]. Each entity will execute its 
own tasks, and if necessary, communicate with one another 
by sending and receiving messages. One code example in 
Parsec is shown in Fig. 2 [14]. In this example the entity 
worker performs some tasks, then receives a storeRequest 
message from another entity, stores the message, and 
resumes working on another task. 

Similar constructs can be added to VHDL-AMS in 
order to extend the standard language and allow the user 

flexibility to influence simulation performance during the 
model development. Desired features for PDES languages 
can be found in [14] and can be used as a basis in the 
development of VHDL-AMS extensions for parallel 
simulations. 
 

entity worker {
  …
  doTask();
  receive (storeRequest msg) {
     storeMessage(msg);
  }
  doMoreTask();
}

 
 

Fig. 2. Parsec code example 
 

IV. CONCLUSION 
 

VHDL-AMS is a standard mixed-signal HDL that 
promises to play very important role in the specification 
and verification of mixed-signal systems. Since it is tool 
and vendor independent, it has advantages over other 
simulator specific parallel simulation languages. However, 
in order to use VHDL-AMS for parallel simulation some 
constructs and elements from parallel simulation languages 
should be added into VHDL-AMS. It would give the 
designers an opportunity to take advantage of standard 
HDL together with ability to have more control over 
parallel simulation performance during the model 
development. Also, the designer should follow presented 
modeling recommendations to achieve effective parallel 
simulation. During the compilation of VHDL-AMS 
models, appropriate partitioning techniques should be 
applied to minimize communication between cluster nodes 
and enable equal workload.  
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